User-Level Attribution Is Out. Geo-Testing Is the Future.

Jan 27, 2023

Even as data-driven marketing surges forward, identifying the channels actually driving your sales is becoming more difficult. 

Data privacy laws have been around for a while (starting with the EU’s GDPR in 2016 and California’s CCPA in 2018), but they’ve expanded rapidly in recent years due to consumer pressures. With Apple’s 2021 release of Apple iOS 14.5, app developers must now include a prompt that allows users to opt-in or opt-out of data tracking. In 2022, Google announced it’ll be getting rid of cookies and Virginia, Colorado, Utah and Connecticut joined California in creating data privacy laws. 

For marketers, these new regulations signal a necessary shift in how they collect and use customer information. Without third-party data to work from thanks to Google’s cookie deprecation, many tried and true methods for tracking ad effectiveness will be much harder to implement. 

In this article, we’ll compare two different approaches: user-level attribution (both single-touch and multi-touch), and geo testing. We’ll share each method’s benefits and drawbacks before explaining why geo-experiments are the best way forward. 

Single-Touch Attribution

In our hyper-connected world, customers rarely purchase things on the first visit to a site. 

They may get pulled in first by an Instagram ad, surf your site, sign up for your newsletter in exchange for 10% off…and then wait. Maybe another targeted ad or a positive review from an influencer a few days later will finally make them buy. But which strategy really fueled their interest? And which one finally made them convert? 

What is Single-Touch Attribution? 

Single-touch attribution is a model that gives all the credit of landing a new customer to just one touchpoint in your marketing funnel. Think of it as crediting the striker alone for winning a soccer game—or the goalie for losing it—instead of acknowledging that the final score is a group effort. 

The “single touch” approach is sometimes given to the first interaction a buyer has with your product, but the most common single-touch attribution model is last-click attribution. 

Last-click attribution gives conversion credit only to the last contact a customer had with your product. In the above example, the positive influencer review the buyer saw right before converting would receive all the credit. Marketers who use last-touch attribution are primarily concerned with the performance of their bottom-of-funnel strategies. 

While last-click attribution certainly has its place – especially if your goal is to have a real-time view of performance – click-based attribution is not without its drawbacks. 

Pros and Cons of Last-Click Attribution 

The biggest benefit of last-click attribution is its simplicity. Because analyzing this data is pretty straightforward, many marketers use last-click attribution to understand ad effectiveness. But this simplicity is also its greatest weakness.

Last-click attribution confuses correlation with causation. It tends to over-credit the channels that drive the least incrementality – that is, the channels that contributed least to the eventual conversion. That’s because it weighs people who would’ve converted anyway without the last-click interaction the same as the buyers who converted because of it. 

Giving credit to the wrong part of your marketing strategy can spell disaster for marketers using last-click attribution. It could cause you to stop spending money on the touchpoints that are leading to the conversion, or waste funds on the very last touchpoint, without seeing a return on investment for doing so.   

What’s more, single-touch attribution models rely on cookies and user level data to work. This information will become harder and harder to come by as consumers begin restricting their sharing of personal data. 

Multi-Touch Attribution (MTA)

Last click may be the quickest and simplest marketing attribution model, but multi-touch is a more holistic approach. Instead of giving all the conversion credit to the first or last touchpoint a customer hit, MTA takes all inputs into account. This approach acknowledges that multiple marketing tactics can all be partly responsible for the final conversion. 

What is Multi-Touch Attribution? 

Multi-touch attribution is a technique that analyzes all customer touchpoints and assigns credit in a percentage to how much each touchpoint contributed to a conversion. 

The basic idea is that you map out a customer journey with different checkpoints in the process corresponding to different marketing techniques. You weigh each checkpoint differently based on how much you think each one contributed to the final conversion.

Say you’re trying to increase sign-ups for your productivity app. You review a customer’s touchpoints with your marketing to understand what actions led to that sign-up. 

  1. The lead first hears of your product by doing a Google search for productivity techniques. Your site comes up in the top results thanks to a paid search ad. The lead spends a few minutes on your website before navigating away. You determine this paid ad was a valuable first step, but not the one that convinced them, so you give it a 20% weight. 
  2. Based on their search activity, the lead is served a Facebook ad for your app a few days later. They once again click through to the site. But on this visit, they spend more time exploring your different subscription plans. You determine this Facebook ad was more valuable than paid search because it led to a longer site visit and more research, but still isn’t the most important approach. You give it a 30% weight. 
  3. A week later, the customer logs onto Youtube. A suggested video is one of their favorite influencers talking about how much your app has helped with their productivity. After watching the video, the prospect finally signs up for a subscription to the app. 

When it’s time to budget your resources for next year, you’ll likely allocate more marketing spend to influencer promotions to capitalize on these results. 

Pros and Cons of Multi-Touch Attribution 

Because MTA considers every touchpoint, it attempts to give marketers a more holistic  picture of their marketing efforts. They can assess the value of each touchpoint – instead of crediting a conversion to just one step – so they know how to make the most of their marketing budget.

Multi-touch attribution shares two big drawbacks with last-click; it confuses correlation with causation, and it relies on being able to track your customer’s journey in the first place. 

Like last-click, assigning arbitrary values of importance to various touchpoints in a sales cycle only proves correlation (that those activities were related to the customer’s experience), not causation (that the chosen touchpoint caused the conversion). MTA also can’t track offline factors that could be driving conversions, like word-of-mouth advertising. In the example above, if the lead actually subscribed because her sister recommended the app to her and not because of the influencer, for example, you could be putting all your marketing budget in the wrong place.  

Also similar to last-click attribution, MTA relies on user-level data that will soon be difficult to source. Apple’s opt-in tracking requirement means most users are now keeping their activity private. This has also affected Facebook Ads’s analytics accuracy, mail tracking opportunities, and more. These restrictions are only growing – and very well could signal the end of attribution all together. 

Geo Testing

In light of all the data and privacy changes, marketers need to future proof with solutions that do not rely on user identifiers. It’s time to refresh the techniques used before the era of cookieless data. Enter: geo testing. 

What is Geo Testing? 

With Haus’s geo testing platform, geographic locations (or geos) are selected based on our customer’s sales activities, and used to test different marketing treatments. The geos are then compared as a whole against a geo group that does not receive the marketing treatment to determine the effects of marketing on users in a particular set of geos. It’s the modern, streamlined version of the classic marketing experiment, matched market testing—which involves A/B testing markets with similar qualities. 

Say, for example, that you want to determine the effects of activating a new marketing channel. Using geo, you start by assigning markets based on your customer activity, and then perform stratified sampling to balance treatment & control. You then implement the new target and holdout regions to your campaigns. At the end of the test, you can look at the difference in sales activity between the treatment and control regions in order to understand the effects of the new channel. 

Advancements in econometric methods like synthetic control can ensure the results are more precise than a simple comparison. Let’s say you want to test more than one additional channel or strategy, for example. Haus’s geo experimentation platform supports multi-cell experiments as well.

Pros and Cons of Geo Testing

If geo testing initially seems like a lot of work, it can be. That’s why so many marketers abandoned matched marketing once cookies made user level measurement so much easier. But in a world with more and more privacy restrictions, this model will be the gold standard moving forward. 

The biggest benefit of geo experiments is that they don’t require user-level data for measurement and attribution. Conversions aren’t determined by customers’ personal data, but bythe number of sales that took place in the specified location. Because geo testing doesn’t require user level data, both Facebook and Google are supportive of these experiments. Nearly all advertising platforms allow for geo targeting within their feature set. 

As user-level tracking and multi-touch attribution are laid to rest, experimentation anchored on first-party data is the way forward. Geotesting is a near-universal approach for measuring the incremental effects of marketing across both upper and lower funnel tactics.

Partner with Haus for your Marketing Testing Needs

Navigating the new waters of a privacy-focused market can seem daunting, but it doesn’t have to be when you’re working with a trusted, experienced analytics partner. Haus’s analytics platform combines causal inference and econometrics to provide the marketing answers you want, with the cookieless attribution you need. 

Ready to see it in action? Request a demo today.

Subscribe to our newsletter

Article Tags

No items found.

All blog articles

Should I Build My Own MMM Software?

Education
Apr 11, 2025

Let's unpack the pros and cons of building your own in-house marketing mix model versus working with a dedicated measurement partner.

Why An Analytics Expert Left Agency Life to Become Haus' First Measurement Strategist

Inside Haus
Apr 10, 2025

Measurement Strategy Team Lead Alyssa Francis sat down with us to discuss how she pushes customers to challenge the testing status quo.

Understanding Incrementality Testing

Education
Apr 2, 2025

Fuzzy on some of the nuances around incrementality testing? This guide goes deep, unpacking detailed examples and step-by-step processes.

MMM Software: What Should You Look For?

Education
Mar 27, 2025

We discuss some of the key questions to ask a potential MMM provider — and the importance of prioritizing causality.

How to Know If An Incrementality Test Result Is ‘Good’ – And What to Do About It

Education
Mar 21, 2025

Plus: What to do when a test result is incremental but not profitable, and a framework for next steps after a test.

Why A Leading Economist From Amazon Came to Haus to Democratize Causal Inference

Inside Haus
Mar 19, 2025

We sit down with Principal Economist Phil Erickson to talk about Haus’ “unhealthy obsession” with productizing causal inference.

Haus x Crisp: Measure What Matters in CPG Marketing

Haus x Crisp: Measure What Matters in CPG Marketing
Haus Announcements
Mar 13, 2025

When real-time retail data meets incrementality testing, CPG brands can finally measure what’s working and optimize ad spend with confidence.

Why Magic Spoon’s Former Head of Growth Embraces Incrementality at Haus

Why Magic Spoon’s Former Head of Growth Embraces Incrementality at Haus
Inside Haus
Mar 10, 2025

In our first episode of Haus Spotlight, we speak to Measurement Strategist Chandler Dutton about the in-the-weeds approach Haus takes with customers.

Do YouTube Ads Perform? Lessons From 190 Incrementality Tests

Do YouTube Ads Perform? Lessons From 190 Incrementality Tests
From the Lab
Mar 6, 2025

An exclusive Haus analysis shows YouTube often delivers powerful new customer acquisition and retail halo effects that traditional metrics miss.

Getting Started with Causal MMM

Getting Started with Causal MMM
Education
Feb 24, 2025

Causal MMM isn’t rooted in historical correlational data – it’s rooted in causal reality.

A First Look at Causal MMM

A First Look at Causal MMM
Haus Announcements
Feb 19, 2025

Causal MMM is a new product from Haus founded on incrementality experiments. Coming 2025.

Would You Bet Your Budget on That? The Case for Honest Marketing Measurement

Would You Bet Your Budget on That? The Case for Honest Marketing Measurement
From the Lab
Feb 14, 2025

Acknowledging uncertainty enables brands to make better, more profitable decisions.

Incrementality: The Fundamentals

Incrementality: The Fundamentals
Education
Feb 13, 2025

Let's explore incrementality from every angle — what it is, what you can test, and what you need to get started.

Getting Started with Incrementality Testing

Getting Started with Incrementality Testing
Education
Feb 7, 2025

As the customer journey grows more complex, incrementality testing helps you determine the true, causal impact of your marketing.

Matched Market Tests Don't Cut It: Why Haus Uses Synthetic Control in Incrementality Experiments

Matched Market Tests Don't Cut It: Why Haus Uses Synthetic Control in Incrementality Experiments
From the Lab
Jan 28, 2025

Haus’ synthetic control produces results that are 4x more precise than those produced by matched market tests.

Incrementality School, E6: How to Foster a Culture of Incrementality Experimentation

Incrementality School, E6: How to Foster a Culture of Incrementality Experimentation
Education
Jan 16, 2025

Having the right measurement toolkit for your business is only meaningful insofar as your team’s ability to use that tool.

Geo-Level Data Now Available for Amazon Vendor Central Brands

Geo-Level Data Now Available for Amazon Vendor Central Brands
Industry News
Jan 6, 2025

Vendor Central sellers – brands that sell *to* Amazon – can now use Haus to measure omnichannel incrementality.

How Does Traditional Marketing Mix Modeling (MMM) Work?

How Does Traditional Marketing Mix Modeling (MMM) Work?
Education
Jan 2, 2025

Traditional marketing mix modeling (MMM) often relies on linear regression to illustrate correlation, not causation.

2025: The Year of Privacy-Durable Marketing Measurement

2025: The Year of Privacy-Durable Marketing Measurement
From the Lab
Dec 28, 2024

Haus incrementality testing doesn’t rely on pixels, PII, or other data that may be vulnerable to privacy regulations.

Meta Shares New Conversion Restrictions for Health and Wellness Brands

Meta Shares New Conversion Restrictions for Health and Wellness Brands
Industry News
Nov 25, 2024

Developing story: Starting in January 2025, some health and wellness brands may not be able to measure lower-funnel conversion events on Meta.

Incrementality School, E5: Randomized Control Experiments, Conversion Lift Testing, and Natural Experiments

Incrementality School, E5: Randomized Control Experiments, Conversion Lift Testing, and Natural Experiments
Education
Nov 21, 2024

Sure, the title's a mouthful – but attributing changes in data (ex: ‘my KPI went up') to certain factors (ex: ‘we increased ad spend’) is hard to do well.

Incrementality Testing: How To Choose The Right Platform

Incrementality Testing: How To Choose The Right Platform
Education
Nov 19, 2024

Whether you’re actively evaluating incrementality platforms or simply curious to learn more, consider this checklist your first stop.

Incrementality School, E4: Who Needs Incrementality Testing?

Incrementality School, E4: Who Needs Incrementality Testing?
Education
Nov 14, 2024

As brands' marketing strategies grow in complexity, incrementality testing becomes increasingly consequential.

Incrementality School, E3: How Do Brands Measure Incrementality?

Incrementality School, E3: How Do Brands Measure Incrementality?
Education
Nov 7, 2024

Traditional MTAs and MMMs won't measure incrementality – but geo experiments reveal clear cause, effect, and value.

Incrementality School, E2: What Can You Incrementality Test?

Incrementality School, E2: What Can You Incrementality Test?
Education
Oct 31, 2024

Haus’ Customer Marketing Lead Maddie Dault and Success Team Lead Nick Doren dive into what you can incrementality test – and why now's the time.

Incrementality School, E1: What is Incrementality?

Incrementality School, E1: What is Incrementality?
Education
Oct 24, 2024

To kick off our new Incrementality School series, three Haus incrementality experts weigh in describing a very fundamental concept.

Inside the Offsite: Why Haus?

Inside the Offsite: Why Haus?
Inside Haus
Oct 17, 2024

At this year's offsite, we dove into why – of all the companies, options, and career paths out there – our growing team chose Haus.

Haus Named One of LinkedIn's Top Startups

Haus Named One of LinkedIn's Top Startups
Inside Haus
Sep 25, 2024

A note from Zach Epstein, Haus CEO.

Google Announces Plan to Migrate Video Action Campaigns to Demand Gen

Google Announces Plan to Migrate Video Action Campaigns to Demand Gen
Industry News
Sep 6, 2024

The news leaves advertisers swimming in uncertainty — which is why it’s so important to test before the change.

Conversion Lag Insights: How Haus Tests Can Help Optimize Q4 Budgets

Conversion Lag Insights: How Haus Tests Can Help Optimize Q4 Budgets
From the Lab
Sep 5, 2024

Post-treatment windows offer a unique glimpse into the lingering impacts of advertising campaigns after they’ve concluded.

PMAX Experiments Revealed: Including vs. Excluding Branded Search Terms

PMAX Experiments Revealed: Including vs. Excluding Branded Search Terms
From the Lab
Aug 20, 2024

We analyzed experiments from leading brands to understand the incremental impacts of including vs. excluding branded terms in PMAX campaigns.

CommerceNext Session Recap: How Newton Baby Uses Incrementality Experiments to Maximize ROI

CommerceNext Session Recap: How Newton Baby Uses Incrementality Experiments to Maximize ROI
From the Lab
Aug 9, 2024

“We ran the test of cutting spend pretty significantly and it turns out a lot of that spend was not incremental,” says Aaron Zagha, Newton Baby CMO.

Introducing Causal Attribution: Your New Daily Incrementality Solution

Introducing Causal Attribution: Your New Daily Incrementality Solution

Causal Attribution syncs your ad platform data with your experiment results to provide a daily read on which channels drive growth.

Haus Announces $20M Raise Led by 01 Advisors

Haus Announces $20M Raise Led by 01 Advisors
Haus Announcements
Jul 30, 2024

With this additional support, Haus is well-positioned to deepen our causal inference capabilities and announce a new product: Causal Attribution.

3 Ways to Perfect Your Prime Day Marketing Strategy

3 Ways to Perfect Your Prime Day Marketing Strategy
Education
Jun 26, 2024

Think Amazon ads are the only effective marketing channel for Prime Day? Think again.

Maximize Your Q4 Growth With 4 High-Impact, Low-Risk Tests

Maximize Your Q4 Growth With 4 High-Impact, Low-Risk Tests
Education
Nov 8, 2023

Not testing during your busy season may be costing you more than you think.

Why Maturing Direct to Consumer Brands Need to Run Incrementality Tests

Why Maturing Direct to Consumer Brands Need to Run Incrementality Tests
Education
Sep 15, 2023

The media strategy that gets DTC brands from zero to one does not get them from one to ten.

5 Signs It’s Time to Invest in Incrementality

5 Signs It’s Time to Invest in Incrementality
Education
Aug 9, 2023

5 common signs that indicate it is definitely time to start investing in incrementality.

$17M Series A, Led by Insight Partners

$17M Series A, Led by Insight Partners

Haus raises $17M Series A led by Insight Partners to build the future of growth intelligence.

Why Meta's “Engaged Views” Is a Distraction, Not a Solution

Why Meta's “Engaged Views” Is a Distraction, Not a Solution
Industry News
Jul 25, 2023

While additional data can be useful, we must question whether this new rollout is truly a solution or merely another diversion.

Why You Need a 3rd Party Incrementality Partner

Why You Need a 3rd Party Incrementality Partner
Education
Jul 6, 2023

Are you stuck wondering if you should be using 3rd party incrementality studies, ad platform lift studies, or trying to design your own? Find out here.

iOS 17 Feels Like iOS 14 All Over Again. What It Means for Growth Marketing…And Does It Matter Anymore?

iOS 17 Feels Like iOS 14 All Over Again. What It Means for Growth Marketing…And Does It Matter Anymore?
Industry News
Jun 12, 2023

A single press release vaguely confirmed that Apple will continue its assault on user level attribution. Here, I unpack what I think it means for growth marketing.

How Automation Is Transforming Growth Marketing

How Automation Is Transforming Growth Marketing
Education
May 30, 2023

As platforms force more automation, the role of the media buyer is evolving. Read on to learn what to expect and what levers are left to pull.

Statistical Significance Is Costing You Money

Statistical Significance Is Costing You Money
From the Lab
Apr 13, 2023

It is profitable to ignore statistical significance when making marketing investments.

The Secret to Comparing Marketing Performance Across Channels

The Secret to Comparing Marketing Performance Across Channels
Education
Mar 2, 2023

While incrementality is better than relying on attribution alone, comparing them as-is is challenging. Thankfully, there’s a better way to get an unbiased data point regardless of the channel.

Your Attribution Model Is Precise but Not Accurate - Here’s Why

Your Attribution Model Is Precise but Not Accurate - Here’s Why
Education
Feb 8, 2023

Learn which common marketing measurement tactics are accurate, precise, neither or both.

How to Use Causal Targeting to Save Money on Promotions

How to Use Causal Targeting to Save Money on Promotions
Education
Feb 1, 2023

Leverage causal targeting to execute promotions that are actually incremental for your business.

Are Promotions Growing Your Business or Losing You Money?

Are Promotions Growing Your Business or Losing You Money?
Education
Feb 1, 2023

Promotions, despite their potential power and ubiquity, are actually hard to execute well.

User-Level Attribution Is Out. Geo-Testing Is the Future.

User-Level Attribution Is Out. Geo-Testing Is the Future.
Education
Jan 27, 2023

Geotesting is a near-universal approach for measuring the incremental effects of marketing across both upper and lower funnel tactics.

The Haus Viewpoint

The Haus Viewpoint
Inside Haus
Jan 18, 2023

We are building Haus to democratize access to world-class decision science tools.